A notion of compatibility for Armendariz and Baer properties over skew PBW extensions
نویسندگان
چکیده
منابع مشابه
BAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS
A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...
متن کاملOre extensions of skew $pi$-Armendariz rings
For a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-Armendariz ring, that is a generalization of both $pi$-Armendariz rings, and $(alpha,delta)$-compatible skew Armendariz rings. We first observe the basic properties of skew $pi$-Armendariz rings, and extend the class of skew $pi$-Armendariz rings through various ring extensions. We nex...
متن کاملore extensions of skew $pi$-armendariz rings
for a ring endomorphism $alpha$ and an $alpha$-derivation $delta$, we introduce a concept, so called skew $pi$-armendariz ring, that is a generalization of both $pi$-armendariz rings, and $(alpha,delta)$-compatible skew armendariz rings. we first observe the basic properties of skew $pi$-armendariz rings, and extend the class of skew $pi$-armendariz rings through various ring extensions. we nex...
متن کاملJacobson’s conjecture and skew PBW extensions
The aim of this paper is to compute the Jacobson’s radical of skew PBW extensions over domains. As a consequence of this result we obtain a direct relation between these extensions and the Jacobson’s conjecture, which implies that skew PBW extensions over domains satisfy this conjecture.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista de la Unión Matemática Argentina
سال: 2017
ISSN: 1669-9637,0041-6932
DOI: 10.33044/revuma.v59n1a08